Acylindrical hyperbolicity of groups acting on quasi-median graphs and equations in graph products
نویسندگان
چکیده
In this paper we study group actions on quasi-median graphs, or 'CAT(0) prism complexes', generalising the notion of CAT(0) cube complexes. We consider hyperplanes in a graph $X$ and define contact $\mathcal{C}X$ for these hyperplanes. show that is always quasi-isometric to tree, result Hagen, under certain conditions action $G \curvearrowright X$ induces an acylindrical \mathcal{C}X$, giving analogue Behrstock, Hagen Sisto. As application, exhibit product quasi-tree, results Kim Koberda right-angled Artin groups. many products $G$, 'largest' $G$ hyperbolic metric space. use equationally noetherian groups over finite graphs girth $\geq 6$ are noetherian, Sela.
منابع مشابه
A Note on Acylindrical Hyperbolicity of Mapping Class Groups
The aim of this note is to give the simplest possible proof that Mapping Class Groups of closed hyperbolic surfaces are acylindrically hyperbolic, and more specifically that their curve graphs are hyperbolic and that pseudo-Anosovs act on them as loxodromic WPDs.
متن کاملMedian and quasi-median direct products of graphs
Median graphs are characterized among direct products of graphs on at least three vertices. Beside some trivial cases, it is shown that one component of G × P3 is median if and only if G is a tree in that the distance between any two vertices of degree at least 3 is even. In addition, some partial results considering median graphs of the form G ×K2 are proved, and it is shown that the only nonb...
متن کاملcommuting and non -commuting graphs of finit groups
فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...
15 صفحه اولAcylindrical accessibility for groups acting on R-trees
We prove an acylindrical accessibility theorem for finitely generated groups acting on R-trees. Namely, we show that if G is a freely indecomposable non-cyclic k-generated group acting minimally and M-acylindrically on an R-tree X then for any ǫ > 0 there is a finite subtree Yǫ ⊆ X of measure at most 2M (k − 1) + ǫ such that GYǫ = X. This generalizes theorems of Z.Sela and T.Delzant about actio...
متن کاملGroups Acting on Tensor Products
Groups preserving a distributive product are encountered often in algebra. Examples include automorphism groups of associative and nonassociative rings, classical groups, and automorphism groups of p-groups. While the great variety of such products precludes any realistic hope of describing the general structure of the groups that preserve them, it is reasonable to expect that insight may be ga...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Groups, Geometry, and Dynamics
سال: 2021
ISSN: ['1661-7207', '1661-7215']
DOI: https://doi.org/10.4171/ggd/595